Search results
Results from the WOW.Com Content Network
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
For every odd positive integer +, the following equation holds: [3] (+) = ()!() +where is the n-th Euler Number.This yields: =,() =,() =,() =For the values of the Dirichlet beta function at even positive integers no elementary closed form is known, and no method has yet been found for determining the arithmetic nature of even beta values (similarly to the Riemann zeta function at odd integers ...
In mathematics, there are two types of Euler integral: [1]. The Euler integral of the first kind is the beta function (,) = = () (+); The Euler integral of the second kind is the gamma function [2] =
It is a multivariate generalization of the beta distribution, [1] hence its alternative name of multivariate beta distribution (MBD). [2] Dirichlet distributions are commonly used as prior distributions in Bayesian statistics , and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial ...
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
Selberg's formula implies Dixon's identity for well poised hypergeometric series, and some special cases of Dyson's conjecture. This is a corollary of Aomoto. This is a corollary of Aomoto. Aomoto's integral formula
In mathematics, Riemann's differential equation, named after Bernhard Riemann, is a generalization of the hypergeometric differential equation, allowing the regular singular points to occur anywhere on the Riemann sphere, rather than merely at 0, 1, and . The equation is also known as the Papperitz equation. [1]