Search results
Results from the WOW.Com Content Network
Quantitative uses of the terms uncertainty and risk are fairly consistent among fields such as probability theory, actuarial science, and information theory. Some also create new terms without substantially changing the definitions of uncertainty or risk. For example, surprisal is a variation on uncertainty sometimes used in information theory ...
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
The history of scientific method considers changes in the methodology of scientific inquiry, not the history of science itself. The development of rules for scientific reasoning has not been straightforward; scientific method has been the subject of intense and recurring debate throughout the history of science, and eminent natural philosophers and scientists have argued for the primacy of ...
There are many philosophical and historical theories as to how scientific consensus changes over time. Because the history of scientific change is extremely complicated, and because there is a tendency to project "winners" and "losers" onto the past in relation to the current scientific consensus, it is very difficult to come up with accurate and rigorous models for scientific change. [17]
The philosopher Wesley C. Salmon described scientific inquiry: The search for scientific knowledge ends far back into antiquity. At some point in the past, at least by the time of Aristotle, philosophers recognized that a fundamental distinction should be drawn between two kinds of scientific knowledge—roughly, knowledge that and knowledge why.
NUSAP is a notational system for the management and communication of uncertainty in science for policy, based on five categories for characterizing any quantitative statement: Numeral, Unit, Spread, Assessment and Pedigree. NUSAP was introduced by Silvio Funtowicz and Jerome Ravetz in the 1990 book Uncertainty and Quality in Science for Policy. [1]
The nature of chaos theory suggests that the predictability of any system is limited because it is impossible to know all of the minutiae of a system at the present time. In principle, the deterministic systems that chaos theory attempts to analyze can be predicted, but uncertainty in a forecast increases exponentially with elapsed time.