Search results
Results from the WOW.Com Content Network
A derived work is for example the National Institute of Standards and Technology (NIST) Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results", and the Eurachem/Citac publication "Quantifying Uncertainty in Analytical Measurement". The uncertainty of the result of a measurement generally ...
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.
The energy–time uncertainty principle does not temporarily violate conservation of energy; it does not imply that energy can be "borrowed" from the universe as long as it is "returned" within a short amount of time. [17]: 145 The energy of the universe is not an exactly known parameter at all times. [1]
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
How does uncertainty expand our cognitive horizons? Think of the unease you may feel on the first day of a new job or when you encounter surprise roadwork on your commute. ... At work, people high ...
When grappling with uncertainty, it can be helpful to take control of what you can.
Taking into account uncertainty arising from different sources, whether in the context of uncertainty analysis or sensitivity analysis (for calculating sensitivity indices), requires multiple samples of the uncertain parameters and, consequently, running the model (evaluating the -function) multiple times. Depending on the complexity of the ...