Search results
Results from the WOW.Com Content Network
In mathematics, the term undefined refers to a value, function, or other expression that cannot be assigned a meaning within a specific formal system. [ 1 ] Attempting to assign or use an undefined value within a particular formal system, may produce contradictory or meaningless results within that system.
The necessity for primitive notions is illustrated in several axiomatic foundations in mathematics: Set theory: The concept of the set is an example of a primitive notion. As Mary Tiles writes: [6] [The] 'definition' of 'set' is less a definition than an attempt at explication of something which is being given the status of a primitive ...
A lesson learned by mathematics in the last 150 years is that it is useful to strip the meaning away from the mathematical assertions (axioms, postulates, propositions, theorems) and definitions. One must concede the need for primitive notions, or undefined terms or concepts, in any study. Such abstraction or formalization makes mathematical ...
Polynomial rings occur and are often fundamental in many parts of mathematics such as number theory, commutative algebra, and algebraic geometry. In ring theory , many classes of rings, such as unique factorization domains , regular rings , group rings , rings of formal power series , Ore polynomials , graded rings , have been introduced for ...
In mathematics and logic, an axiomatic system is any set of primitive notions and axioms to logically derive theorems.A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems.
Based on ancient Greek methods, an axiomatic system is a formal description of a way to establish the mathematical truth that flows from a fixed set of assumptions. Although applicable to any area of mathematics, geometry is the branch of elementary mathematics in which this method has most extensively been successfully applied.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Mathematics in the twentieth century evolved into a network of axiomatic formal systems. This was, in considerable part, influenced by the example Hilbert set in the Grundlagen .