enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continuous linear operator - Wikipedia

    en.wikipedia.org/wiki/Continuous_linear_operator

    Example: A continuous and bounded linear map that is not bounded on any neighborhood: If : is the identity map on some locally convex topological vector space then this linear map is always continuous (indeed, even a TVS-isomorphism) and bounded, but is bounded on a neighborhood if and only if there exists a bounded neighborhood of the origin ...

  3. Open mapping theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Open_mapping_theorem...

    In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

  4. Bounded operator - Wikipedia

    en.wikipedia.org/wiki/Bounded_operator

    A sequentially continuous linear map between two TVSs is always bounded, [1] but the converse requires additional assumptions to hold (such as the domain being bornological and the codomain being locally convex). If the domain is also a sequential space, then is sequentially continuous if and only if it is continuous.

  5. Tietze extension theorem - Wikipedia

    en.wikipedia.org/wiki/Tietze_extension_theorem

    Pavel Urysohn. In topology, the Tietze extension theorem (also known as the Tietze–Urysohn–Brouwer extension theorem or Urysohn-Brouwer lemma [1]) states that any real-valued, continuous function on a closed subset of a normal topological space can be extended to the entire space, preserving boundedness if necessary.

  6. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    The usual proof of the closed graph theorem employs the open mapping theorem.It simply uses a general recipe of obtaining the closed graph theorem from the open mapping theorem; see closed graph theorem § Relation to the open mapping theorem (this deduction is formal and does not use linearity; the linearity is needed to appeal to the open mapping theorem which relies on the linearity.)

  7. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    A continuous map from a closed ball of Euclidean space to its boundary cannot be the identity on the boundary. Similarly, the Borsuk–Ulam theorem says that a continuous map from the n-dimensional sphere to R n has a pair of antipodal points that are mapped to the same point.

  8. Operator topologies - Wikipedia

    en.wikipedia.org/wiki/Operator_topologies

    The continuous linear functionals on B(H) for the ultraweak, ultrastrong, ultrastrong * and Arens-Mackey topologies are the same, and are the elements of the predual B(H) *. By definition, the continuous linear functionals in the norm topology are the same as those in the weak Banach space topology.

  9. Topologies on spaces of linear maps - Wikipedia

    en.wikipedia.org/wiki/Topologies_on_spaces_of...

    The following sets will constitute the basic open subsets of topologies on spaces of linear maps. For any subsets and , let (,):= {: ()}.. The family {(,):,} forms a neighborhood basis [1] at the origin for a unique translation-invariant topology on , where this topology is not necessarily a vector topology (that is, it might not make into a TVS).