Search results
Results from the WOW.Com Content Network
A microwave cavity or radio frequency cavity (RF cavity) is a special type of resonator, consisting of a closed (or largely closed) metal structure that confines electromagnetic fields in the microwave or RF region of the spectrum. The structure is either hollow or filled with dielectric material. The microwaves bounce back and forth between ...
There are many industrial applications for cavity resonators, including microwave ovens, microwave communication systems, and remote imaging systems using electro magnetic waves. How a resonant cavity performs can affect the amount of energy that is required to make it resonate, or the relative stability or instability of the system.
Cavity resonators are widely used as the frequency determining element in microwave oscillators. Their resonant frequency can be tuned by moving one of the walls of the cavity in or out, changing its size. An illustration of the electric and magnetic field of one of the possible modes in a cavity resonator.
Physical length of conventional cavity filters can vary from over 205 cm in the 40 MHz range, down to under 27.5 cm in the 900 MHz range. In the microwave range (1000 MHz and up), cavity filters become more practical in terms of size and a significantly higher quality factor than lumped element resonators and filters.
The cavity magnetron is a high-power vacuum tube used in early radar systems and subsequently in microwave ovens and in linear particle accelerators. A cavity magnetron generates microwaves using the interaction of a stream of electrons with a magnetic field, while moving past a series of cavity resonators, which are small, open cavities in a ...
The name microcavity stems from the fact that it is often only a few micrometers thick, the spacer layer sometimes even in the nanometer range. As with common lasers, this forms an optical cavity or optical resonator, allowing a standing wave to form inside the spacer layer or a traveling wave that goes around in the ring.
The simplest klystron tube is the two-cavity klystron. In this tube there are two microwave cavity resonators, the "catcher" and the "buncher". When used as an amplifier, the weak microwave signal to be amplified is applied to the buncher cavity through a coaxial cable or waveguide, and the amplified signal is extracted from the catcher cavity.
The resonant frequency of the microwave cavity is tuned to the frequency of the hyperfine energy transition of hydrogen: 1,420,405,752 hertz. [15] A small fraction of the signal in the microwave cavity is coupled into a coaxial cable and then sent to a coherent radio receiver. The microwave signal coming out of the maser is very weak, a few ...