Search results
Results from the WOW.Com Content Network
A tunnel diode or Esaki diode is a type of semiconductor diode that has effectively "negative resistance" due to the quantum mechanical effect called tunneling. It was invented in August 1957 by Leo Esaki and Yuriko Kurose when working at Tokyo Tsushin Kogyo, now known as Sony .
A resonant-tunneling diode (RTD) is a diode with a resonant-tunneling structure in which electrons can tunnel through some resonant states at certain energy levels. The current–voltage characteristic often exhibits negative differential resistance regions. All types of tunneling diodes make use of quantum mechanical tunneling. Characteristic ...
Tunneling applications include the tunnel diode, [5] quantum computing, flash memory, and the scanning tunneling microscope. Tunneling limits the minimum size of devices used in microelectronics because electrons tunnel readily through insulating layers and transistors that are thinner than about 1 nm. [6]
The tunnel diode circuit (see diagram) is an example. [82] The tunnel diode TD has voltage controlled negative differential resistance. [54] The battery adds a constant voltage (bias) across the diode so it operates in its negative resistance range, and provides power to amplify the signal.
Tunnel diodes and Gunn diodes are examples of components that have negative resistance. Hysteresis vs single-valued: Devices which have hysteresis; that is, in which the current–voltage relation depends not only on the present applied input but also on the past history of inputs, have I–V curves consisting of families of closed loops. Each ...
Consequently, tunnel diode logic circuits required a means to reset the diode after each logical operation. However, a simple tunnel diode gate offered little isolation between inputs and outputs and had low fan in and fan out. More complex gates, with additional tunnel diodes and bias power supplies, overcame some of these limitations. [7]
In semiconductor devices, a backward diode (also called back diode [2]) is a variation on a Zener diode or tunnel diode having a better conduction for small reverse biases (for example –0.1 to –0.6 V) than for forward bias voltages. The reverse current in such a diode is by tunneling, which is also known as the tunnel effect. [3] [4] [5]
A well known application of this method is the approximation of the transfer function of a pn junction diode. The transfer function of an ideal diode has been given at the top of this (non-linear) section. However, this formula is rarely used in network analysis, a piecewise approximation being used instead.