Search results
Results from the WOW.Com Content Network
Therefore, vision was found to be correlated with general memory function in older adults and is not modality specific. As we age performance in regards to spatial configurations deteriorates. In a task to store and combine two different spatial configurations to form a novel one young people out-performed the elderly. [25] Vision also has an ...
In perception research, the memory color effect is cited as evidence for the opponent color theory, which states that four basic colors can be paired with its opponent color: red—green, blue—yellow. This explains why participants adjust the ripe banana color to a blueish tone to make its memory color yellow as gray. [10]
The advantage to longitudinal studies include being able to see the effects that aging has on performance for each participant and even being able to distinguish early signs of memory related diseases. However, this type of study can be very costly and timely which might make it more likely to have participants drop out over the course of the ...
Opponent-process theory is a psychological and neurological model that accounts for a wide range of behaviors, including color vision. This model was first proposed in 1878 by Ewald Hering , a German physiologist, and later expanded by Richard Solomon , a 20th-century psychologist.
Loss of olfactory function is also an early symptom of neurodegenerative diseases including Parkinson’s and Alzheimer’s, according to recent findings published in Neurology. It found that the ...
Combined amygdalohippocampal (A + H) lesions in rats impaired performance on an object recognition task when the retention intervals were increased beyond 0s and when test stimuli were repeated within a session. Damage to the [amygdala-en] or [hippocampus-en] does not affect object recognition, whereas A + H damage produces clear deficits. [39]
Color vision is categorized foremost according to the dimensionality of the color gamut, which is defined by the number of primaries required to represent the color vision. This is generally equal to the number of photopsins expressed: a correlation that holds for vertebrates but not invertebrates .
The main goal of visual neuroscience is to understand how neural activity results in visual perception, as well as behaviors dependent on vision. In the past, visual neuroscience has focused primarily on how the brain (and in particular the visual cortex) responds to light rays projected from static images and onto the retina. [1]