Search results
Results from the WOW.Com Content Network
The pandas package in Python implements this operation as "melt" function which converts a wide table to a narrow one. The process of converting a narrow table to wide table is generally referred to as "pivoting" in the context of data transformations.
Original file (1,247 × 962 pixels, file size: 2 KB, MIME type: application/pdf) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
Graph_level_structure.pdf (685 × 283 pixels, file size: 65 KB, MIME type: application/pdf) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
Graph-tool, a free Python module for manipulation and statistical analysis of graphs. NetworkX, an open source Python library for studying complex graphs. Tulip (software) is a free software in the domain of information visualisation capable of manipulating huge graphs (with more than 1.000.000 elements).
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
Statistical graphics have been central to the development of science and date to the earliest attempts to analyse data. Many familiar forms, including bivariate plots, statistical maps, bar charts, and coordinate paper were used in the 18th century.
Graph coloring [2] [3]: GT4 Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.
Apache Parquet and Apache ORC are popular examples of on-disk columnar data formats. Arrow is designed as a complement to these formats for processing data in-memory. [11] The hardware resource engineering trade-offs for in-memory processing vary from those associated with on-disk storage. [12]