Search results
Results from the WOW.Com Content Network
Unstable isotopes decay through various radioactive decay pathways, most commonly alpha decay, beta decay, or electron capture. Many rare types of decay, such as spontaneous fission or cluster decay, are known. (See Radioactive decay for details.) [citation needed] Of the first 82 elements in the periodic table, 80 have isotopes considered to ...
Proton number Z, also named the atomic number, determines the position of an element in the periodic table. The approximately 3300 known nuclides [7] are commonly represented in a chart with Z and N for its axes and the half-life for radioactive decay indicated for each unstable nuclide (see figure). [8]
The synthetic elements are those with atomic numbers 95–118, as shown in purple on the accompanying periodic table: [1] these 24 elements were first created between 1944 and 2010. The mechanism for the creation of a synthetic element is to force additional protons into the nucleus of an element with an atomic number lower than 95.
This is an accepted version of this page This is the latest accepted revision, reviewed on 27 January 2025. Periodic table of the elements with eight or more periods Extended periodic table Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon Potassium Calcium Scandium Titanium Vanadium Chromium ...
Periodic table with elements colored according to the half-life of their most stable isotope. Elements which contain at least one stable isotope. Slightly radioactive elements: the most stable isotope is very long-lived, with a half-life of over two million years.
All the first 66 elements, except 43, 61, 62, and 63. If spontaneous fission is possible for the nuclides with mass numbers ≥ 93, then all such nuclides are unstable, so that only the first 40 elements would be stable. If protons decay, then there are no stable nuclides. Energetically unstable to one or more known decay modes, but no decay ...
From a thermodynamic perspective, a substance is inert, or nonlabile, if it is thermodynamically unstable (positive standard Gibbs free energy of formation) yet decomposes at a slow, or negligible rate. [1] Most of the noble gases, which appear in the last column of the periodic table, are classified as inert
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.