Search results
Results from the WOW.Com Content Network
Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral. Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the ...
In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [ 1 ] [ 2 ] Heronian triangles are named after Heron of Alexandria , based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84 .
The above formula is known as the shoelace formula or the surveyor's formula. If we locate the vertices in the complex plane and denote them in counterclockwise sequence as a = x A + y A i , b = x B + y B i , and c = x C + y C i , and denote their complex conjugates as a ¯ {\displaystyle {\bar {a}}} , b ¯ {\displaystyle {\bar {b}}} , and c ...
This formula is the same as Heron's formula, proved by Heron of Alexandria about 60 BCE, though knowledge of the formula may go back to Archimedes. As precipitation was important agriculture and food production, Qin developed precipitation gauges that was widely used in 1247 during the Mongol Empire / Southern Song dynasty to gather ...
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
This determinant is, by Heron's formula, equal to −16 times the square of the area of a triangle with side lengths d(AB), d(BC), d(AC); so checking if this determinant equals zero is equivalent to checking whether the triangle with vertices A, B, C has zero area (so the vertices are collinear).
A Heronian tetrahedron [1] (also called a Heron tetrahedron [2] or perfect pyramid [3]) is a tetrahedron whose edge lengths, face areas and volume are all integers. The faces must therefore all be Heronian triangles (named for Hero of Alexandria ).