Search results
Results from the WOW.Com Content Network
The number of elements in an array can be determined either by evaluating the array in scalar context or with the help of the $# sigil. The latter gives the index of the last element in the array, not the number of elements. The expressions scalar(@array) and ($#array + 1) are equivalent.
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
Perl 5 has built-in, language-level support for associative arrays. Modern Perl refers to associative arrays as hashes; the term associative array is found in older documentation but is considered somewhat archaic. Perl 5 hashes are flat: keys are strings and values are scalars.
The number of elements in the array is $#array + 1, since Perl arrays default to using zero-based indices. If the array has not been defined, the return is also undefined. If the array is defined but has not had any elements assigned to it, e.g., @array = (), then $#array returns −1.
A simple dynamic array can be constructed by allocating an array of fixed-size, typically larger than the number of elements immediately required. The elements of the dynamic array are stored contiguously at the start of the underlying array, and the remaining positions towards the end of the underlying array are reserved, or unused.
Perl Data Language (abbreviated PDL) is a set of free software array programming extensions to the Perl programming language. PDL extends the data structures built into Perl, to include large multidimensional arrays , and adds functionality to manipulate those arrays as vector objects.
a = [3, 1, 5, 7] // assign an array to the variable a a [0.. 1] // return the first two elements of a a [.. 1] // return the first two elements of a: the zero can be omitted a [2..] // return the element 3 till last one a [[0, 3]] // return the first and the fourth element of a a [[0, 3]] = [100, 200] // replace the first and the fourth element ...
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).