Search results
Results from the WOW.Com Content Network
In organic chemistry, a homologation reaction, also known as homologization, is any chemical reaction that converts the reactant into the next member of the homologous series. A homologous series is a group of compounds that differ by a constant unit, generally a methylene ( −CH 2 − ) group.
A tetrad is the association of a pair of homologous chromosomes (4 sister chromatids) physically held together by at least one DNA crossover. This physical attachment allows for alignment and segregation of the homologous chromosomes in the first meiotic division. In most organisms, each replicated chromosome (composed of two identical sisters ...
At various steps of these recombination processes, heteroduplex DNA (double-stranded DNA consisting of single strands from each of the two homologous chromosomes which may or may not be perfectly complementary) is formed. During meiosis non-crossover recombinants occur frequently and these appear to arise mainly by the SDSA pathway.
Although the basic chemical reaction is the same for both tyrosine and serine recombinases, there are some differences between them. [13] Tyrosine recombinases, such as Cre or FLP, cleave one DNA strand at a time at points that are staggered by 6–8bp, linking the 3' end of the strand to the hydroxyl group of the tyrosine nucleophile (Fig. 1 ...
Next, the 3' end of the invading DNA primes DNA synthesis, causing displacement of the complementary strand, which subsequently anneals to the single-stranded DNA generated from the other end of the initial double-stranded break. The structure that results is a cross-strand exchange, also known as a Holliday junction.
The single-strand annealing (SSA) pathway of homologous recombination repairs double-strand breaks between two repeat sequences. The SSA pathway is unique in that it does not require a separate similar or identical molecule of DNA, like the DSBR or SDSA pathways of homologous recombination.
Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.
The digital polymerase chain reaction simultaneously amplifies thousands of samples, each in a separate droplet within an emulsion or partition within an micro-well. Suicide PCR is typically used in paleogenetics or other studies where avoiding false positives and ensuring the specificity of the amplified fragment is the highest priority.