Search results
Results from the WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin θ < θ. So we have < <. For negative values of θ we have, by the symmetry of the sine function
satisfying respectively y(0) = 0, y ′ (0) = 1 and y(0) = 1, y ′ (0) = 0. It follows from the theory of ordinary differential equations that the first solution, sine, has the second, cosine, as its derivative, and it follows from this that the derivative of cosine is the negative of the sine. The identity is equivalent to the assertion that ...
The notations sin −1 (x), cos −1 (x), tan −1 (x), etc., as introduced by John Herschel in 1813, [7] [8] are often used as well in English-language sources, [1] much more than the also established sin [−1] (x), cos [−1] (x), tan [−1] (x) – conventions consistent with the notation of an inverse function, that is useful (for example ...
The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is sin ( 0 ) = 0 {\displaystyle \sin(0)=0} .
The right-hand end of the ST or SRT scale cannot be accurate for both arcsine(0.1) = 5.74 degrees and arctangent(0.1) = 5.71 degrees. Some slide rules, such as the K&E Deci-Lon in the photo, calibrate to be accurate for radian conversion, at 5.73 degrees (off by nearly 0.4% for the tangent and 0.2% for the sine for angles around 5 degrees).
Thus, as θ gets closer to 0, sin(θ)/θ is "squeezed" between a ceiling at height 1 and a floor at height cos θ, which rises towards 1; hence sin(θ)/θ must tend to 1 as θ tends to 0 from the positive side: + =. For the case where θ is a small negative number – 1 / 2 π < θ < 0, we use the fact that sine is an odd function:
Similarly / = is a constructible angle because 12 is a power of two (4) times a Fermat prime (3). But π / 9 = 20 ∘ {\displaystyle \pi /9=20^{\circ }} is not a constructible angle, since 9 = 3 ⋅ 3 {\displaystyle 9=3\cdot 3} is not the product of distinct Fermat primes as it contains 3 as a factor twice, and neither is π / 7 ≈ 25.714 ∘ ...