enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Any-angle path planning - Wikipedia

    en.wikipedia.org/wiki/Any-angle_path_planning

    Any-angle path planning algorithms are pathfinding algorithms that search for a Euclidean shortest path between two points on a grid map while allowing the turns in the path to have any angle. The result is a path that cuts directly through open areas and has relatively few turns. [ 1 ]

  3. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  4. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    StraightEdge Open Source Java 2D path finding (using A*) and lighting project. Includes applet demos. python-pathfinding Open Source Python 2D path finding (using Dijkstra's Algorithm) and lighting project. Daedalus Lib Open Source. Daedalus Lib manages fully dynamic triangulated 2D environment modeling and pathfinding through A* and funnel ...

  5. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    s: the source node; t: the destination node; K: the number of shortest paths to find; p u: a path from s to u; B is a heap data structure containing paths; P: set of shortest paths from s to t; count u: number of shortest paths found to node u; Algorithm: P =empty, count u = 0, for all u in V insert path p s = {s} into B with cost 0 while B is ...

  6. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    The single-source shortest path problem, in which we have to find shortest paths from a source vertex v to all other vertices in the graph. The single-destination shortest path problem, in which we have to find shortest paths from all vertices in the directed graph to a single destination vertex v. This can be reduced to the single-source ...

  7. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Compared to Dijkstra's algorithm, the A* algorithm only finds the shortest path from a specified source to a specified goal, and not the shortest-path tree from a specified source to all possible goals. This is a necessary trade-off for using a specific-goal-directed heuristic. For Dijkstra's algorithm, since the entire shortest-path tree is ...

  8. Yen's algorithm - Wikipedia

    en.wikipedia.org/wiki/Yen's_algorithm

    In graph theory, Yen's algorithm computes single-source K-shortest loopless paths for a graph with non-negative edge cost. [1] The algorithm was published by Jin Y. Yen in 1971 and employs any shortest path algorithm to find the best path, then proceeds to find K − 1 deviations of the best path.

  9. Route assignment - Wikipedia

    en.wikipedia.org/wiki/Route_assignment

    The all-or-nothing or shortest path assignment is not trivial from a technical-computational view. Each traffic zone is connected to n - 1 zones, so there are numerous paths to be considered. In addition, we are ultimately interested in traffic on links. A link may be a part of several paths, and traffic along paths has to be summed link by link.