Search results
Results from the WOW.Com Content Network
The characteristic equation of a third-order constant coefficients or Cauchy–Euler (equidimensional variable coefficients) linear differential equation or difference equation is a cubic equation. Intersection points of cubic Bézier curve and straight line can be computed using direct cubic equation representing Bézier curve.
The cubic-plus-chain (CPC) [28] [29] [30] equation of state hybridizes the classical cubic equation of state with the SAFT chain term. [21] [22] The addition of the chain term allows the model to be capable of capturing the physics of both short-chain and long-chain non-associating components ranging from alkanes to polymers. The CPC monomer ...
Cubic equations of state originated from the van der Waals equation of state. Hence, all cubic equations of state can be considered 'modified van der Waals equation of state'. There is a very large number of such cubic equations of state. For process engineering, cubic equations of state are today still highly relevant, e.g. the Peng Robinson ...
The success of the Redlich–Kwong equation in modeling many real gases accurately demonstrate that a cubic, two-parameter equation of state can give adequate results, if it is properly constructed. After they demonstrated the viability of such equations, many others created equations of similar form to try to improve on the results of Redlich ...
The cubic virial equation of state at is: = (+ +) It can be rearranged as: (+ +) = The factor / is the volume of saturated gas according to the ideal gas law, and can be given a unique name : = In the saturation region, the cubic equation has three roots, and can be written alternatively as: () = which can be expanded as: (+ +) + (+ +) = is a ...
Cubic equations, which are polynomial equations of the third degree (meaning the highest power of the unknown is 3) can always be solved for their three solutions in terms of cube roots and square roots (although simpler expressions only in terms of square roots exist for all three solutions, if at least one of them is a rational number).
For a general formula that is always true, one thus needs to choose a root of the cubic equation such that m ≠ 0. This is always possible except for the depressed equation y 4 = 0. Now, if m is a root of the cubic equation such that m ≠ 0, equation becomes
The polynomial () (+) is a cubic polynomial: after multiplying out and collecting terms of the same degree, it becomes + +, with highest exponent 3.. The polynomial (+ +) + (+ + +) is a quintic polynomial: upon combining like terms, the two terms of degree 8 cancel, leaving + + + +, with highest exponent 5.