Search results
Results from the WOW.Com Content Network
To change 1 / 3 to a decimal, divide 1.000... by 3 (" 3 into 1.000... "), and stop when the desired accuracy is obtained, e.g., at 4 decimals with 0.3333. The fraction 1 / 4 can be written exactly with two decimal digits, while the fraction 1 / 3 cannot be written exactly as a
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
Any such decimal fraction, i.e.: d n = 0 for n > N, may be converted to its equivalent infinite decimal expansion by replacing d N by d N − 1 and replacing all subsequent 0s by 9s (see 0.999...). In summary, every real number that is not a decimal fraction has a unique infinite decimal expansion.
If the dividend has a fractional part (expressed as a decimal fraction), one can continue the procedure past the ones place as far as desired. If the divisor has a fractional part, one can restate the problem by moving the decimal to the right in both numbers until the divisor has no fraction, which can make the problem easier to solve (e.g ...
Fractions are written as two integers, the numerator and the denominator, with a dividing bar between them. The fraction m / n represents m parts of a whole divided into n equal parts. Two different fractions may correspond to the same rational number; for example 1 / 2 and 2 / 4 are equal, that is:
Decimal fractions were first developed and used by the Chinese in the form of rod calculus in the 1st century BC, and then spread to the rest of the world. [ 6 ] [ 7 ] J. Lennart Berggren notes that positional decimal fractions were first used in the Arab by mathematician Abu'l-Hasan al-Uqlidisi as early as the 10th century. [ 8 ]
Such a decimal representation specifies the real number as the least upper bound of the decimal fractions that are obtained by truncating the sequence: given a positive integer n, the truncation of the sequence at the place n is the finite partial sum