Search results
Results from the WOW.Com Content Network
The extent to which such modelled data reflect real-world species distributions will depend on a number of factors, including the nature, complexity, and accuracy of the models used and the quality of the available environmental data layers; the availability of sufficient and reliable species distribution data as model input; and the influence ...
Machine learning may also provide predictions to farmers at the point of need, such as the contents of plant-available nitrogen in soil, to guide fertilization planning. [59] As more agriculture becomes ever more digital, machine learning will underpin efficient and precise farming with less manual labour.
H2O.ai is an open-source data science and machine learning platform; KNIME is a machine learning and data mining software implemented in Java. Massive Online Analysis (MOA) is an open-source project for large scale mining of data streams, also developed at the University of Waikato in New Zealand. Neural Designer is a data mining software based ...
Most data files are adapted from UCI Machine Learning Repository data, some are collected from the literature. treated for missing values, numerical attributes only, different percentages of anomalies, labels 1000+ files ARFF: Anomaly detection: 2016 (possibly updated with new datasets and/or results) [332] Campos et al.
LIBSVM – C++ support vector machine libraries; mlpack – open-source library for machine learning, exploits C++ language features to provide maximum performance and flexibility while providing a simple and consistent application programming interface (API) Mondrian – data analysis tool using interactive statistical graphics with a link to R
This is a list of free and open-source software for geological data handling and interpretation. The list is split into broad categories, depending on the intended use of the software and its scope of functionality. Notice that 'free and open-source' requires that the source code is available and users are given a free software license.
Depending on definitional boundaries, predictive modelling is synonymous with, or largely overlapping with, the field of machine learning, as it is more commonly referred to in academic or research and development contexts. When deployed commercially, predictive modelling is often referred to as predictive analytics.
In agriculture, data mining utilizes data science techniques to analyze large volumes of agricultural data. Recent technological advancements, such as drones, and satellite imagery, have enabled the collection of extensive data on soil health, weather patterns, crop growth, and pest activity. This data is analyzed to improve agricultural ...