Search results
Results from the WOW.Com Content Network
VAM is a parameter used in cycling as a measure of fitness and speed; it is useful for relatively objective comparisons of performances and estimating a rider's power output per kilogram of body mass, which is one of the most important qualities of a cyclist who competes in stage races and other mountainous [citation needed] events. Dr.
The specific power may be expressed in watts per kilogram of body mass. Active cyclists can produce from 1.0 W/kg (novice female) 2.2 W/kg (average untrained male), 3.0 W/kg (male, fair or female, good [fitness]), and 6.6 W/kg (top-class male athletes) at their functional threshold power (about one hour). 5 W/kg is about the level reachable by ...
In the sport of competitive cycling athlete's performance is increasingly being expressed in VAMs and thus as a power-to-weight ratio in W/kg. This can be measured through the use of a bicycle powermeter or calculated from measuring incline of a road climb and the rider's time to ascend it.
Fix these common indoor cycling setup mistakes and you could be cranking out more power than you even knew you had.
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter ...
The metabolic equivalent of task (MET) is the objective measure of the ratio of the rate at which a person expends energy, relative to the mass of that person, while performing some specific physical activity compared to a reference, currently set by convention at an absolute 3.5 mL of oxygen per kg per minute, which is the energy expended when sitting quietly by a reference individual, chosen ...
Thus, an athlete performing "interval" training while using a power meter can instantly see that they are producing 300 watts, for example, instead of waiting for their heart rate to climb to a certain point. In addition, power meters measure the force that moves the bike forward multiplied by the velocity, which is the desired goal.
Cycling tends to feel more comfortable if nearly all gear changes have more or less the same percentage difference. [5] For example, a change from a 13-tooth sprocket to a 15-tooth sprocket (15.4%) feels very similar to a change from a 20-tooth sprocket to a 23-tooth sprocket (15%), even though the latter has a larger absolute difference.