enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The derivatives that appear in Maxwell's equations are vectors and electromagnetic fields are represented by the Faraday bivector F. This formulation is as general as that of differential forms for manifolds with a metric tensor, as then these are naturally identified with r-forms and there are corresponding operations. Maxwell's equations ...

  4. Saturation (magnetic) - Wikipedia

    en.wikipedia.org/wiki/Saturation_(magnetic)

    Saturation puts a practical limit on the maximum magnetic fields achievable in ferromagnetic-core electromagnets and transformers of around 2 T, which puts a limit on the minimum size of their cores. This is one reason why high power motors, generators, and utility transformers are physically large; to conduct the large amounts of magnetic flux ...

  5. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.

  6. Electromagnet - Wikipedia

    en.wikipedia.org/wiki/Electromagnet

    This equation can be derived from the energy stored in a magnetic field. Energy is force times distance. Rearranging terms yields the equation above. The 1.6 T limit on the field [17] [19] previously mentioned sets a limit on the maximum force per unit core area, or magnetic pressure, an iron-core electromagnet can exert; roughly:

  7. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    The Maxwell–Faraday equation (listed as one of Maxwell's equations) describes the fact that a spatially varying (and also possibly time-varying, depending on how a magnetic field varies in time) electric field always accompanies a time-varying magnetic field, while Faraday's law states that emf (electromagnetic work done on a unit charge when ...

  8. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Then, if the total flux is known, the field itself can be deduced at every point. Common examples of symmetries which lend themselves to Gauss's law include: cylindrical symmetry, planar symmetry, and spherical symmetry. See the article Gaussian surface for examples where these symmetries are exploited to compute electric fields.

  9. Biot–Savart law - Wikipedia

    en.wikipedia.org/wiki/Biot–Savart_law

    In physics, specifically electromagnetism, the Biot–Savart law (/ ˈ b iː oʊ s ə ˈ v ɑːr / or / ˈ b j oʊ s ə ˈ v ɑːr /) [1] is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.