Search results
Results from the WOW.Com Content Network
The reflected ultrasound is received by the probe, transformed into an electric impulse as voltage, and sent to the engine for signal processing and conversion to an image on the screen. The depth reached by the ultrasound beam is dependent on the frequency of the probe used. The higher the frequency, the lesser the depth reached. [9]
The sign is an imaging finding using a 3.5–7.5 MHz ultrasound probe in the fourth and fifth intercostal spaces in the anterior clavicular line using the M-Mode of the machine. This finding is seen in the M-mode tracing as pleura and lung being indistinguishable as linear hyperechogenic lines and is fairly reliable for diagnosis of a pneumothorax.
These procedures generally use lower frequencies than medical diagnostic ultrasound (from 0.7 to 2 MHz), but higher the frequency means lower the focusing energy. HIFU treatment is often guided by MRI. Focused ultrasound may be used to dissolve kidney stones by lithotripsy. Ultrasound may be used for cataract treatment by phacoemulsification.
T 2 *-weighted sequences are used to detect deoxygenated hemoglobin, methemoglobin, or hemosiderin in lesions and tissues. [2] Diseases with such patterns include intracranial hemorrhage, arteriovenous malformation, cavernoma, hemorrhage in a tumor, punctate hemorrhages in diffuse axonal injury, superficial siderosis, thrombosed aneurysm, phleboliths in vascular lesions, and some forms of ...
By changing the pulse delays, the computer can scan the beam of ultrasound in a raster pattern across the tissue. Echoes reflected by different density tissue, received by the transducers, build up an image of the underlying structures. Weld examination by phased array. TOP: The phased array probe emits a series of beams to flood the weld with ...
Abdominal ultrasound can be used to diagnose abnormalities in various internal organs, such as the kidneys, [1] liver, gallbladder, pancreas, spleen and abdominal aorta.If Doppler ultrasonography is added, the blood flow inside blood vessels can be evaluated as well (for example, to look for renal artery stenosis).
The speckle effect is a result of the interference of many waves of the same frequency, having different phases and amplitudes, which add together to give a resultant wave whose amplitude, and therefore intensity, varies randomly.
Ultrasound can ablate tumors or other tissue non-invasively. [4] This is accomplished using a technique known as high intensity focused ultrasound (HIFU), also called focused ultrasound surgery. This procedure uses generally lower frequencies than medical diagnostic ultrasound (250–2000 kHz), but significantly higher time-averaged intensities.