Search results
Results from the WOW.Com Content Network
He also claimed that "the first practical application of back-propagation was for estimating a dynamic model to predict nationalism and social communications in 1974" by him. [ 37 ] Around 1982, [ 36 ] : 376 David E. Rumelhart independently developed [ 38 ] : 252 backpropagation and taught the algorithm to others in his research circle.
This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1] Similarly to the Manhattan update rule, Rprop takes into account only the sign of the partial derivative over all patterns (not the magnitude), and acts independently on each "weight".
Almeida–Pineda recurrent backpropagation is an extension to the backpropagation algorithm that is applicable to recurrent neural networks. It is a type of supervised learning . It was described somewhat cryptically in Richard Feynman 's senior thesis, and rediscovered independently in the context of artificial neural networks by both Fernando ...
Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...
Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
He was born in Pori. [1] He received his MSc in 1970 and introduced a reverse mode of automatic differentiation in his MSc thesis. [2] [3] In 1974 he obtained the first doctorate ever awarded in computer science at the University of Helsinki. [4]
Paul John Werbos (born September 4, 1947) is an American social scientist and machine learning pioneer. He is best known for his 1974 dissertation, which first described the process of training artificial neural networks through backpropagation of errors. [1]