Search results
Results from the WOW.Com Content Network
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
Although Algorithmic Combinatorics on Partial Words is primarily aimed at the graduate level, reviewer Miklós Bóna writes that it is for the most part "remarkably easy to read" and suggests that it could also be read by advanced undergraduates. However, Bóna criticizes the book as being too focused on the combinatorics on words as an end in ...
It covers most notably his theory of permutations and combinations; the standard foundations of combinatorics today and subsets of the foundational problems today known as the twelvefold way. It also discusses the motivation and applications of a sequence of numbers more closely related to number theory than probability; these Bernoulli numbers ...
Combinatorics, a MathWorld article with many references. Combinatorics, from a MathPages.com portal. The Hyperbook of Combinatorics, a collection of math articles links. The Two Cultures of Mathematics by W. T. Gowers, article on problem solving vs theory building
Combinatorics on words is a fairly new field of mathematics, branching from combinatorics, which focuses on the study of words and formal languages. The subject looks at letters or symbols, and the sequences they form. Combinatorics on words affects various areas of mathematical study, including algebra and computer science. There have been a ...
Combinatorics has always played an important role in quantum field theory and statistical physics. [3] However, combinatorial physics only emerged as a specific field after a seminal work by Alain Connes and Dirk Kreimer , [ 4 ] showing that the renormalization of Feynman diagrams can be described by a Hopf algebra .
This would have been the first attempt on record to solve a difficult problem in permutations and combinations. [2] The claim, however, is implausible: this is one of the few mentions of combinatorics in Greece, and the number they found, 1.002 × 10 12, seems too round to be more than a guess. [3] [4]
The ergodic theory of dynamical systems has recently been used to prove combinatorial theorems about number theory which has given rise to the field of arithmetic combinatorics. Also dynamical systems theory is heavily involved in the relatively recent field of combinatorics on words. Also combinatorial aspects of dynamical systems are studied.