Search results
Results from the WOW.Com Content Network
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
Following the patent and release of Harold's Long Scale calculator featuring two knobs on the outside rim in 1914, he designed the Magnum Long Scale calculator in 1927. [6] [7] As the name "Magnum" implies, it was a fairly large device at 4.5 inches in diameter—about 1.5 inches more than Fowler's average non-Magnum-series calculators. [8]
The product was named Otis King's Patent Calculator, and was manufactured and sold by Carbic Ltd. in London from about 1922 to about 1972. With a log-scale decade length of 66 inches, the Otis King calculator should be about a full digit more accurate than a 6-inch pocket slide rule. But due to inaccuracies in tic-mark placement, some portions ...
A scale factor of 1 ⁄ 10 cannot be used here, because scaling 160 by 1 ⁄ 10 gives 16, which is greater than the greatest value that can be stored in this fixed-point format. However, 1 ⁄ 11 will work as a scale factor, because the maximum scaled value, 160 ⁄ 11 = 14. 54, fits within this range. Given this set:
Atari Calculator (or Calculator) is a proprietary software program developed by Atari, Inc. for Atari 8-bit computers and publoished in 1979. It incorporates the functionality of a scientific calculator into a software calculator. It was written in assembly language by American programmer and game designer Carol Shaw.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Thus, even though the answer directly reads 1.4, the correct answer is 1.4×10 = 14. For an example with even larger numbers, to multiply 88×20, the top scale is again positioned to start at the 2 on the bottom scale. Since 2 represents 20, all numbers in that scale are multiplied by 10.
The calculator described above was called "Model No. 1" . [6] Model 2 had scales on the inner cylinder for calculating logs and sines.The "Fuller-Bakewell" model 3 had two scales of angles printed on the inner cylinder to calculate cosine² and sine ⋅ cosine [note 1] for use by engineers and surveyors for tacheometry calculations.