enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  3. Scientific modelling - Wikipedia

    en.wikipedia.org/wiki/Scientific_modelling

    A scientific model seeks to represent empirical objects, phenomena, and physical processes in a logical and objective way. All models are in simulacra, that is, simplified reflections of reality that, despite being approximations, can be extremely useful. [6] Building and disputing models is fundamental to the scientific enterprise.

  4. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    Unlike previous models, BERT is a deeply bidirectional, unsupervised language representation, pre-trained using only a plain text corpus. Context-free models such as word2vec or GloVe generate a single word embedding representation for each word in the vocabulary, whereas BERT takes into account the context for each occurrence of a given word ...

  5. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text. T5 models are usually pretrained on a massive dataset of text and code, after which they can perform the text-based tasks that are similar to their pretrained tasks.

  6. GPT-1 - Wikipedia

    en.wikipedia.org/wiki/GPT-1

    Examples of such datasets include QNLI (Wikipedia articles) and MultiNLI (transcribed speech, popular fiction, and government reports, among other sources); [7] It similarly outperformed previous models on two tasks related to question answering and commonsense reasoning—by 5.7% on RACE, [8] a dataset of written question-answer pairs from ...

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. GPT-3 - Wikipedia

    en.wikipedia.org/wiki/GPT-3

    Generative Pre-trained Transformer 3 (GPT-3) is a large language model released by OpenAI in 2020.. Like its predecessor, GPT-2, it is a decoder-only [2] transformer model of deep neural network, which supersedes recurrence and convolution-based architectures with a technique known as "attention". [3]

  9. List of large language models - Wikipedia

    en.wikipedia.org/wiki/List_of_large_language_models

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.