Search results
Results from the WOW.Com Content Network
In category theory, a branch of mathematics, an initial object of a category C is an object I in C such that for every object X in C, there exists precisely one morphism I → X. The dual notion is that of a terminal object (also called terminal element): T is terminal if for every object X in C there exists exactly one morphism X → T.
Arm's optimized math routines; GCE-Math is a version of C/C++ math functions written for C++ constexpr (compile-time calculation) CORE-MATH, correctly rounded for single and double precision. SIMD (vectorized) math libraries include SLEEF, Yeppp!, and Agner Fog's VCL, plus a few closed-source ones like SVML and DirectXMath. [9]
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Unsolved problems in mathematics (6 C, 78 P) Pages in category "Mathematical problems" The following 89 pages are in this category, out of 89 total.
A system of cuts that solves this problem for every possible vertex pair can be collected into a structure known as the Gomory–Hu tree of the graph. A generalization of the minimum cut problem with terminals is the k-terminal cut, or multi-terminal cut. In a planar graph, this problem can be solved in
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 [1] and republished in 1999. [2] Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
a b c = a (b c) which typically is not equal to (a b) c. This convention is useful because there is a property of exponentiation that (a b) c = a bc, so it's unnecessary to use serial exponentiation for this. However, when exponentiation is represented by an explicit symbol such as a caret (^) or arrow (↑), there is no common standard.