Ad
related to: geometric probability problems and answers
Search results
Results from the WOW.Com Content Network
Buffon's needle was the earliest problem in geometric probability to be solved; [2] it can be solved using integral geometry. The solution for the sought probability p, in the case where the needle length l is not greater than the width t of the strips, is =.
Problems of the following type, and their solution techniques, were first studied in the 18th century, and the general topic became known as geometric probability. (Buffon's needle) What is the chance that a needle dropped randomly onto a floor marked with equally spaced parallel lines will cross one of the lines?
The geometric distribution is the only memoryless discrete probability distribution. [4] It is the discrete version of the same property found in the exponential distribution . [ 1 ] : 228 The property asserts that the number of previously failed trials does not affect the number of future trials needed for a success.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
In geometric probability theory, Wendel's theorem, named after James G. Wendel, gives the probability that N points distributed uniformly at random on an ()-dimensional hypersphere all lie on the same "half" of the hypersphere.
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
The answer to the problem as proposed was given in the 1749 issue of the magazine by a Mr. Heath, and stated as 76,257.86 sq.yds. which was arrived at partly by "trial and a table of logarithms". The answer is not so accurate as the number of digits of precision would suggest. No analytical solution was provided.
Ad
related to: geometric probability problems and answers