enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    A Cayley graph of the symmetric group S 4 using the generators (red) a right circular shift of all four set elements, and (blue) a left circular shift of the first three set elements. Cayley table, with header omitted, of the symmetric group S 3. The elements are represented as matrices. To the left of the matrices, are their two-line form.

  3. List of character tables for chemically important 3D point groups

    en.wikipedia.org/wiki/List_of_character_tables...

    The S 2 group is the same as the C i group in the nonaxial groups section. S n groups with an odd value of n are identical to C nh groups of same n and are therefore not considered here (in particular, S 1 is identical to C s). The S 8 table reflects the 2007 discovery of errors in older references. [4] Specifically, (R x, R y) transform not as ...

  4. Dihedral group of order 6 - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group_of_order_6

    Only the neutral elements are symmetric to the main diagonal, so this group is not abelian. Cayley table as general (and special) linear group GL(2, 2) In mathematics, D 3 (sometimes alternatively denoted by D 6) is the dihedral group of degree 3 and order 6. It equals the symmetric group S 3. It is also the smallest non-abelian group. [1]

  5. Representation theory of the symmetric group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids.

  6. Automorphisms of the symmetric and alternating groups

    en.wikipedia.org/wiki/Automorphisms_of_the...

    For every symmetric group other than S 6, there is no other conjugacy class consisting of elements of order 2 that has the same number of elements as the class of transpositions. Or as follows: Each permutation of order two (called an involution ) is a product of k > 0 disjoint transpositions, so that it has cyclic structure 2 k 1 n −2 k .

  7. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    This group has six mirror planes, each containing two edges of the cube or one edge of the tetrahedron, a single S 4 axis, and two C 3 axes. T d is isomorphic to S 4, the symmetric group on 4 letters, because there is a 1-to-1 correspondence between the elements of T d and the 24 permutations of the four 3-fold

  8. Clebsch–Gordan coefficients for SU(3) - Wikipedia

    en.wikipedia.org/wiki/Clebsch–Gordan...

    The permutations of n identical particles constitute the symmetric group S n. Every n-particle state of S n that is made up of single-particle states of the fundamental N-dimensional SU(N) multiplet belongs to an irreducible SU(N) representation. Thus, it can be used to determine the Clebsch–Gordan series for any unitary group. [17]

  9. Dynkin diagram - Wikipedia

    en.wikipedia.org/wiki/Dynkin_diagram

    In all these cases except for D 4, there is a single non-trivial automorphism (Out = C 2, the cyclic group of order 2), while for D 4, the automorphism group is the symmetric group on three letters (S 3, order 6) – this phenomenon is known as "triality". It happens that all these diagram automorphisms can be realized as Euclidean symmetries ...