Search results
Results from the WOW.Com Content Network
In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity) states that for any real number x and integer n it is the case that ( + ) = + , where i is the imaginary unit (i 2 = −1).
de Moivre's illustration of his piecewise linear approximation. De Moivre's law first appeared in his 1725 Annuities upon Lives, the earliest known example of an actuarial textbook. [6] Despite the name now given to it, de Moivre himself did not consider his law (he called it a "hypothesis") to be a true description of the pattern of human ...
The n-th power of a complex number can be computed using de Moivre's formula, which is obtained by repeatedly applying the above formula for the product: = ⏟ = (( + )) = ( + ). For example, the first few powers of the imaginary unit i are i , i 2 = − 1 , i 3 = − i , i 4 = 1 , i 5 = i , … {\displaystyle i,i^{2}=-1,i^{3}=-i,i ...
which is valid for all real x, can be used to put the formula for the n th roots of unity into the form e 2 π i k n , 0 ≤ k < n . {\displaystyle e^{2\pi i{\frac {k}{n}}},\quad 0\leq k<n.} It follows from the discussion in the previous section that this is a primitive n th-root if and only if the fraction k / n is in lowest terms ...
According to the de Moivre–Laplace theorem, as n grows large, the shape of the discrete distribution converges to the continuous Gaussian curve of the normal distribution. In probability theory , the de Moivre–Laplace theorem , which is a special case of the central limit theorem , states that the normal distribution may be used as an ...
Abraham de Moivre was born in Vitry-le-François in Champagne on 26 May 1667. His father, Daniel de Moivre, was a surgeon who believed in the value of education. Though Abraham de Moivre's parents were Protestant, he first attended Christian Brothers' Catholic school in Vitry, which was unusually tolerant given religious tensions in France at the time.
where θ is the angle whose cosine is α / M and whose sine is β / M ; the last equality here made use of de Moivre's formula. Now the process of finding the coefficients c j and c j+1 guarantees that they are also complex conjugates, which can be written as γ ± δi. Using this in the last equation gives this expression for ...
On a note more distantly related to combinatorics, the second section also discusses the general formula for sums of integer powers; the free coefficients of this formula are therefore called the Bernoulli numbers, which influenced Abraham de Moivre's work later, [16] and which have proven to have numerous applications in number theory.