Search results
Results from the WOW.Com Content Network
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
In bacteria, the coding regions typically take up 88% of the genome. [1] The remaining 12% does not encode proteins, but much of it still has biological function through genes where the RNA transcript is functional (non-coding genes) and regulatory sequences, which means that almost all of the bacterial genome has a function. [1]
An example of such an antibacterial is rifampicin, which inhibits bacterial transcription of DNA into mRNA by inhibiting DNA-dependent RNA polymerase by binding its beta-subunit, while 8-hydroxyquinoline is an antifungal transcription inhibitor. [55] The effects of histone methylation may also work to inhibit the action of transcription. Potent ...
Bacterial transcription is governed by three main sequence elements: Promoters are elements of DNA that may bind RNA polymerase and other proteins for the successful initiation of transcription directly upstream of the gene. Operators recognize repressor proteins that bind to a stretch of DNA and inhibit the transcription of the gene.
During macronucleus formation, the regions containing the rDNA gene clusters are amplified, dramatically increasing the amount of available templates for transcription up to several thousand copies. In some ciliate genera, such as Tetrahymena or the Hypotrich genus Oxytricha , [ 8 ] extensive fragmentation of the amplified DNA leads to the ...
A- and B-DNA are very similar, forming right-handed helices, whereas Z-DNA is a left-handed helix with a zig-zag phosphate backbone. Z-DNA is thought to play a specific role in chromatin structure and transcription because of the properties of the junction between B- and Z-DNA.
The uptake of donor DNA and its recombinational incorporation into the recipient chromosome depends on the expression of numerous bacterial genes whose products direct this process. [ 11 ] [ 12 ] In general, transformation is a complex, energy-requiring developmental process that appears to be an adaptation for repairing DNA damage.
More than five decades ago, Jacob, Brenner, and Cuzin proposed the replicon hypothesis to explain the regulation of chromosomal DNA synthesis in E. coli. [18] The model postulates that a diffusible, trans-acting factor, a so-called initiator, interacts with a cis-acting DNA element, the replicator, to promote replication onset at a nearby origin.