Search results
Results from the WOW.Com Content Network
In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.
Magnetic susceptibility is a dimensionless proportionality constant that indicates the degree of magnetization of a material in response to an applied magnetic field. A related term is magnetizability, the proportion between magnetic moment and magnetic flux density. [3]
By definition, a perfect vacuum has a relative permittivity of exactly 1 whereas at standard temperature and pressure, air has a relative permittivity of ε r air ≡ κ air ≈ 1.0006 . Relative permittivity is directly related to electric susceptibility (χ) by = otherwise written as
In electricity (electromagnetism), the electric susceptibility (; Latin: susceptibilis "receptive") is a dimensionless proportionality constant that indicates the degree of polarization of a dielectric material in response to an applied electric field. The greater the electric susceptibility, the greater the ability of a material to polarize in ...
In electromagnetism, permeance is the inverse of reluctance.In a magnetic circuit, permeance is a measure of the quantity of magnetic flux for a number of current-turns. A magnetic circuit almost acts as though the flux is conducted, therefore permeance is larger for large cross-sections of a material and smaller for smaller cross section lengths.
The relative static permittivity, ε r, can be measured for static electric fields as follows: first the capacitance of a test capacitor, C 0, is measured with vacuum between its plates. Then, using the same capacitor and distance between its plates, the capacitance C with a dielectric between the plates is measured. The relative permittivity ...
The relation between the magnetizing field H and the magnetic field B can also be expressed as the magnetic permeability: = / or the relative permeability = /, where is the vacuum permeability. The permeability of ferromagnetic materials is not constant, but depends on H .
The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant , conventionally written as μ 0 (pronounced "mu nought" or "mu zero").