Search results
Results from the WOW.Com Content Network
A feasibility study of the ozone formed from the oxidation of nitrogen dioxide in ambient air reported by the WHO suggested that daily deaths of 1 to 2% is attributed to exposure to ozone concentration above 47.3 ppb and exposure above 75.7 ppb is attributed to 3 to 5% increase in daily mortality. A level of 114 ppb was attributed to 5 to 9% ...
Ozone in high concentrations is harmful to animals but they have been found to use small amounts of ozone. The immune system is thought to use ozonolysis by antibodies organizing 1 O 2 allowing H 2 0 3 to be produced. Traditionally the role of antibodies was thought to be only specifically binding to pathogenic antigens.
Multiple studies have been conducted to determine the mechanism behind ozone's harmful effects, particularly in the lungs. These studies have shown that exposure to ozone causes changes in the immune response within the lung tissue, resulting in disruption of both the innate and adaptive immune response, as well as altering the protective ...
The trachea is an area of dead space: the oxygen-poor air it contains at the end of exhalation is the first air to re-enter the posterior air sacs and lungs. In comparison to the mammalian respiratory tract , the dead space volume in a bird is, on average, 4.5 times greater than it is in mammals of the same size.
Ground-level ozone (O 3), also known as surface-level ozone and tropospheric ozone, is a trace gas in the troposphere (the lowest level of the Earth's atmosphere), with an average concentration of 20–30 parts per billion by volume (ppbv), with close to 100 ppbv in polluted areas.
Lighter Side. Medicare. News
To decrease the risk of asphyxiation, there have been proposals to add warning odors to some commonly used gases such as nitrogen and argon. However, CGA has argued against this practice. They are concerned that odorizing may decrease worker vigilance, not everyone can smell the odorants, and assigning a different smell to each gas may be ...
Triatomic oxygen (ozone, O 3) is a very reactive allotrope of oxygen that is a pale blue gas at standard temperature and pressure. Liquid and solid O 3 have a deeper blue color than ordinary O 2, and they are unstable and explosive. [5] [6] In its gas phase, ozone is destructive to materials like rubber and fabric and is damaging to lung tissue ...