Ad
related to: latent heat for dummies reading comprehension questions
Search results
Results from the WOW.Com Content Network
The terms sensible heat and latent heat refer to energy transferred between a body and its surroundings, defined by the occurrence or non-occurrence of temperature change; they depend on the properties of the body. Sensible heat is sensed or felt in a process as a change in the body's temperature.
: latent heat of evaporation (2400 kJ/kg at 25°C to 2600 kJ/kg at −40°C) c p d {\displaystyle c_{pd}} : specific heat at constant pressure for air (≈ 1004 J/(kg·K)) Tables exist for exact values of the last two coefficients.
The Bowen ratio is calculated by the equation: =, where is sensible heating and is latent heating. In this context, when the magnitude of is less than one, a greater proportion of the available energy at the surface is passed to the atmosphere as latent heat than as sensible heat, and the converse is true for values of greater than one.
If the latent heat is known, then knowledge of one point on the coexistence curve, for instance (1 bar, 373 K) for water, determines the rest of the curve. Conversely, the relationship between ln P {\displaystyle \ln P} and 1 / T {\displaystyle 1/T} is linear, and so linear regression is used to estimate the latent heat.
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes.
Equivalent potential temperature, commonly referred to as theta-e (), is a quantity that is conserved during changes to an air parcel's pressure (that is, during vertical motions in the atmosphere), even if water vapor condenses during that pressure change.
5417.7530 is a rounded constant based on the molecular weight of water, latent heat of evaporation, and the universal gas constant. The humidity adjustment approximately amounts to one Fahrenheit degree for every millibar by which the partial pressure of water in the atmosphere exceeds 10 millibars (10 hPa).
According to energy conservation and energy being a state function that does not change over a full cycle, the work from a heat engine over a full cycle is equal to the net heat, i.e. the sum of the heat put into the system at high temperature, q H > 0, and the waste heat given off at the low temperature, q C < 0.
Ad
related to: latent heat for dummies reading comprehension questions