enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    The maximum lift force that can be generated by an airfoil at a given airspeed depends on the shape of the airfoil, especially the amount of camber (curvature such that the upper surface is more convex than the lower surface, as illustrated at right). Increasing the camber generally increases the maximum lift at a given airspeed.

  3. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated.

  4. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    For a thin airfoil of any shape the lift slope is π 2 /90 ≃ 0.11 per degree. At higher angles a maximum point is reached, after which the lift coefficient reduces. The angle at which maximum lift coefficient occurs is the stall angle of the airfoil, which is approximately 10 to 15 degrees on a typical airfoil.

  5. Aerodynamic center - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_center

    The distribution of forces on a wing in flight are both complex and varying. This image shows the forces for two typical airfoils, a symmetrical design on the left, and an asymmetrical design more typical of low-speed designs on the right. This diagram shows only the lift components; the similar drag considerations are not illustrated.

  6. Airfoil - Wikipedia

    en.wikipedia.org/wiki/Airfoil

    [2] [3] This force is known as aerodynamic force and can be resolved into two components: lift (perpendicular to the remote freestream velocity) and drag (parallel to the freestream velocity). The lift on an airfoil is primarily the result of its angle of attack.

  7. Foil (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/Foil_(fluid_mechanics)

    Streamlines around a NACA 0012 airfoil at moderate angle of attack. A foil generates lift primarily because of its shape and angle of attack. When oriented at a suitable angle, the foil deflects the oncoming fluid, resulting in a force on the foil in the direction opposite to the deflection. This force can be resolved into two components: lift ...

  8. Pitching moment - Wikipedia

    en.wikipedia.org/wiki/Pitching_moment

    In aerodynamics, the pitching moment on an airfoil is the moment (or torque) produced by the aerodynamic force with respect to the aerodynamic center on the airfoil . The pitching moment on the wing of an airplane is part of the total moment that must be balanced using the lift on the horizontal stabilizer. [1]:

  9. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    Drag and lift coefficients for the NACA 63 3 618 airfoil. Full curves are lift, dashed drag; red curves have R e = 3·10 6, blue 9·10 6. Coefficients of lift and drag against angle of attack. Curve showing induced drag, parasitic drag and total drag as a function of airspeed. Drag curve for the NACA 63 3 618 airfoil, colour-coded as opposite plot.