enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inelastic mean free path - Wikipedia

    en.wikipedia.org/wiki/Inelastic_mean_free_path

    The inelastic mean free path of electrons can roughly be described by a universal curve that is the same for all materials. [1] [3] The knowledge of the IMFP is indispensable for several electron spectroscopy and microscopy measurements. [4]

  3. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.

  4. Mean free path - Wikipedia

    en.wikipedia.org/wiki/Mean_free_path

    In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a result of one or more successive collisions with other particles.

  5. Electron transfer - Wikipedia

    en.wikipedia.org/wiki/Electron_transfer

    Especially in proteins, electron transfer often involves hopping of an electron from one redox-active center to another one. The hopping pathway, which can be viewed as a vector, guides and facilitates ET within an insulating matrix. Typical redox centers are iron-sulfur clusters, e.g. the 4Fe-4S ferredoxins. These sites are often separated by ...

  6. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    Electrons are removed from excited chlorophyll molecules and transferred through a series of intermediate carriers to ferredoxin, a water-soluble electron carrier. As in PSII, this is a solid-state process that operates with 100% efficiency. There are two different pathways of electron transport in PSI.

  7. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    In mammals, this metabolic pathway is important in beta oxidation of fatty acids and catabolism of amino acids and choline, as it accepts electrons from multiple acetyl-CoA dehydrogenases. [ 32 ] [ 33 ] In plants, ETF-Q oxidoreductase is also important in the metabolic responses that allow survival in extended periods of darkness.

  8. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    The two charge carriers, electrons and holes, will typically have different drift velocities for the same electric field. Quasi-ballistic transport is possible in solids if the electrons are accelerated across a very small distance (as small as the mean free path), or for a very short time (as short as the mean free time). In these cases, drift ...

  9. Malate–aspartate shuttle - Wikipedia

    en.wikipedia.org/wiki/Malate–aspartate_shuttle

    Illustration of the malate–aspartate shuttle pathway. The malate–aspartate shuttle (sometimes simply the malate shuttle) is a biochemical system for translocating electrons produced during glycolysis across the semipermeable inner membrane of the mitochondrion for oxidative phosphorylation in eukaryotes.