enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limits of integration - Wikipedia

    en.wikipedia.org/wiki/Limits_of_integration

    In Integration by substitution, the limits of integration will change due to the new function being integrated. With the function that is being derived, a {\displaystyle a} and b {\displaystyle b} are solved for f ( u ) {\displaystyle f(u)} .

  3. Interchange of limiting operations - Wikipedia

    en.wikipedia.org/wiki/Interchange_of_limiting...

    in which taking the limit first with respect to n gives 0, and with respect to m gives ∞. Many of the fundamental results of infinitesimal calculus also fall into this category: the symmetry of partial derivatives, differentiation under the integral sign, and Fubini's theorem deal with the interchange of differentiation and integration operators.

  4. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  5. Order of integration (calculus) - Wikipedia

    en.wikipedia.org/wiki/Order_of_integration...

    The integral can be reduced to a single integration by reversing the order of integration as shown in the right panel of the figure. To accomplish this interchange of variables, the strip of width dy is first integrated from the line x = y to the limit x = z, and then the result is integrated from y = a to y = z, resulting in:

  6. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.

  7. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...

  8. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    The limits of integration are often not easily interchangeable (without normality or with complex formulae to integrate). One makes a change of variables to rewrite the integral in a more "comfortable" region, which can be described in simpler formulae. To do so, the function must be adapted to the new coordinates.

  9. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    The function f(x) is called the integrand, the points a and b are called the limits (or bounds) of integration, and the integral is said to be over the interval [a, b], called the interval of integration. [18] A function is said to be integrable if its integral over its domain is finite. If limits are specified, the integral is called a ...