Search results
Results from the WOW.Com Content Network
The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem.The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.
Hexagonal close-packing would result in a six-sided pyramid with a hexagonal base. Collections of snowballs arranged in pyramid shape. The front pyramid is hexagonal close-packed and rear is face-centered cubic. The cannonball problem asks which flat square arrangements of cannonballs can be stacked into a square pyramid.
Packing circles in simple bounded shapes is a common type of problem in recreational mathematics. The influence of the container walls is important, and hexagonal packing is generally not optimal for small numbers of circles. Specific problems of this type that have been studied include: Circle packing in a circle; Circle packing in a square
A simple proof by Chau and Chung from 2010 uses the Delaunay triangulation for the set of points that are centers of circles in a saturated circle packing. [11] The hexagonal honeycomb conjecture The most efficient partition of the plane into equal areas is the regular hexagonal tiling. [12] Related to Thue's theorem. Dodecahedral conjecture
The Kissing Number Problem. A broad category of problems in math are called the Sphere Packing Problems. They range from pure math to practical applications, generally putting math terminology to ...
It is also related to the densest circle packing of the plane, in which every circle is tangent to six other circles, which fill just over 90% of the area of the plane. The case when the problem is restricted to a square grid was solved in 1989 by Jaigyoung Choe who proved that the optimal figure is an irregular hexagon. [4] [5]
Many problems in the chemical and physical sciences can be related to packing problems where more than one size of sphere is available. Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or interstitial packing.
A close packed unit cell, both face-centered cubic and hexagonal close packed, can form two different shaped holes. Looking at the three green spheres in the hexagonal packing illustration at the top of the page, they form a triangle-shaped hole. If an atom is arranged on top of this triangular hole it forms a tetrahedral interstitial hole.