enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are commonly depicted in the manner shown at the top of the figure, where is shown as dependent upon itself. However, an implied temporal dependence is not shown.

  3. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    There are two main types of neural networks: In neuroscience, a biological neural network is a physical structure found in brains and complex nervous systems—a population of nerve cells connected by synapses. In machine learning, an artificial neural network is a mathematical model used to approximate nonlinear functions.

  4. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  5. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]

  6. Artificial neuron - Wikipedia

    en.wikipedia.org/wiki/Artificial_neuron

    Self-loops do not cause contradictions, since the network operates in synchronous discrete time-steps. As a simple example, consider a single neuron with threshold 0, and a single inhibitory self-loop. Its output would oscillate between 0 and 1 at every step, acting as a "clock". Any finite state machine can be simulated by a MCP neural network ...

  7. History of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    [ac] These two developments helped to revive the exploration of artificial neural networks. [122] [199] Neural networks, along with several other similar models, received widespread attention after the 1986 publication of the Parallel Distributed Processing, a two volume collection of papers edited by Rumelhart and psychologist James McClelland.

  8. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks , which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series .

  9. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Some artificial neural networks are adaptive systems and are used for example to model populations and environments, which constantly change. Neural networks can be hardware- (neurons are represented by physical components) or software-based (computer models), and can use a variety of topologies and learning algorithms.