Search results
Results from the WOW.Com Content Network
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
The inverse cumulative distribution function (quantile function) of the logistic distribution is a generalization of the logit function. Its derivative is called the quantile density function. They are defined as follows: (;,) = + ().
Computable Document Format (CDF) is an electronic document format [1] designed to allow authoring dynamically generated, interactive content. [2] CDF was created by Wolfram Research , and CDF files can be created using Mathematica . [ 3 ]
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().
CDF of Weibull distribution for the example of predicting failure in materials, σ 0 = 50 MPa. The Weibull distribution, represented as a cumulative distribution function (CDF), is defined by: = (()) in which m is the Weibull modulus.
In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...
Where and are the cdf and pdf of the corresponding random variables. Then Y = X 2 ∼ χ 1 2 . {\displaystyle Y=X^{2}\sim \chi _{1}^{2}.} Alternative proof directly using the change of variable formula