enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scale analysis (statistics) - Wikipedia

    en.wikipedia.org/wiki/Scale_analysis_(statistics)

    In statistics, scale analysis is a set of methods to analyze survey data, in which responses to questions are combined to measure a latent variable. These items can ...

  3. Scale analysis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scale_analysis_(mathematics)

    Scale analysis rules as follows: Rule1-First step in scale analysis is to define the domain of extent in which we apply scale analysis. Any scale analysis of a flow region that is not uniquely defined is not valid. Rule2-One equation constitutes an equivalence between the scales of two dominant terms appearing in the equation. For example,

  4. Probability plot correlation coefficient plot - Wikipedia

    en.wikipedia.org/wiki/Probability_plot...

    Vertical axis: Probability plot correlation coefficient; Horizontal axis: Value of shape parameter. That is, for a series of values of the shape parameter, the correlation coefficient is computed for the probability plot associated with a given value of the shape parameter. These correlation coefficients are plotted against their corresponding ...

  5. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    The probability of tossing tails is 1 − p (so here p is θ above). Suppose the outcome is 49 heads and 31 tails, and suppose the coin was taken from a box containing three coins: one which gives heads with probability p = 1 ⁄ 3, one which gives heads with probability p = 1 ⁄ 2 and another which gives heads with probability p = 2 ⁄ 3 ...

  6. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.

  7. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  8. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    For example, the relative probabilities of taking a car or bus to work do not change if a bicycle is added as an additional possibility. This allows the choice of K alternatives to be modeled as a set of K − 1 independent binary choices, in which one alternative is chosen as a "pivot" and the other K − 1 compared against it, one at a time.

  9. L-moment - Wikipedia

    en.wikipedia.org/wiki/L-moment

    As an example consider a dataset with a few data points and one outlying data value. If the ordinary standard deviation of this data set is taken it will be highly influenced by this one point: however, if the L-scale is taken it will be far less sensitive to this data value.