Search results
Results from the WOW.Com Content Network
Crystals can be classified in three ways: lattice systems, crystal systems and crystal families. The various classifications are often confused: in particular the trigonal crystal system is often confused with the rhombohedral lattice system, and the term "crystal system" is sometimes used to mean "lattice system" or "crystal family".
It can be used to define the rhombohedral lattice system, a honeycomb with rhombohedral cells. A rhombohedron has two opposite apices at which all face angles are equal; a prolate rhombohedron has this common angle acute, and an oblate rhombohedron has an obtuse angle at these vertices.
R rhombohedral; A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell.
However, the rhombohedral axes are often shown (for the rhombohedral lattice) in textbooks because this cell reveals the 3 m symmetry of the crystal lattice. The rhombohedral unit cell for the hexagonal Bravais lattice is the D-centered [ 1 ] cell, consisting of two additional lattice points which occupy one body diagonal of the unit cell with ...
The Bravais lattice of the space group is determined by the lattice system together with the initial letter of its name, which for the non-rhombohedral groups is P, I, F, A or C, standing for the principal, body centered, face centered, A-face centered or C-face centered lattices. There are seven rhombohedral space groups, with initial letter R.
The table below organizes the space groups of the monoclinic crystal system by crystal class. It lists the International Tables for Crystallography space group numbers, [ 2 ] followed by the crystal class name, its point group in Schoenflies notation , Hermann–Mauguin (international) notation , orbifold notation, and Coxeter notation, type ...
These groups may contain only two-fold axes, mirror planes, and/or an inversion center. These are the crystallographic point groups 1 and 1 (triclinic crystal system), 2, m, and 2 / m , and 222, 2 / m 2 / m 2 / m , and mm2 (orthorhombic). (The short form of 2 / m 2 / m 2 / m is mmm.)
In crystallography, the orthorhombic crystal system is one of the 7 crystal systems. Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base ( a by b ) and height ( c ), such that a , b , and c are distinct.