Search results
Results from the WOW.Com Content Network
The AN/AWG-9 and AN/APG-71 radars are all-weather, multi-mode X band pulse-Doppler radar systems used in the F-14 Tomcat, and also tested on TA-3B. [1] It is a long-range air-to-air system capable of guiding several AIM-54 Phoenix or AIM-120 AMRAAM missiles simultaneously, using its track while scan mode.
The radar operator, would, while IRACQ maintained angle track be slewing the range system from minimum range to maximum so as to regain track of the target at its true range of <500 nmi (900 km). As the target passed through point of closest approach (PCA) and increased in range the process was repeated at maximum range indication.
[1] [2] [3] This includes field of view in terms of solid angle and maximum unambiguous range and velocity, as well as angular, range and velocity resolution. Radar sensors are classified by application, architecture, radar mode, platform, and propagation window.
A plan position indicator (PPI) is a type of radar display that represents the radar antenna in the center of the display, with the distance from it and height above ground drawn as concentric circles. As the radar antenna rotates, a radial trace on the PPI sweeps in unison with it about the center point. It is the most common type of radar ...
Typical RCS diagram (A-26 Invader) Radar cross-section (RCS), denoted σ, also called radar signature, is a measure of how detectable an object is by radar. A larger RCS indicates that an object is more easily detected. [1] An object reflects a limited amount of radar energy back to the source. The factors that influence this include: [1]
The radar "looks" with the looking angle θ (or so called off-nadir angle). The angle α between x-axis and the line of sight (LOS) is called cone angle, the angle φ between the x-axis and the projection of the line of sight to the (x; y)-plane is called azimuth angle. Cone- and azimuth angle are related by cosα = cosφ ∙ cosε.
Note that even in this idealized example, in general, we must steer over the 2-D angle-Doppler plane at discrete points to detect potential targets (moving the location of the 2-D sinc main lobe shown in the figure), and do so for each of the range bins in our system. The basic functional diagram is shown to the right.
The bistatic angle is the angle subtended between the transmitter, target and receiver in a bistatic radar. When it is exactly zero the radar is a monostatic radar, when it is close to zero the radar is pseudo-monostatic, and when it is close to 180 degrees the radar is a forward scatter radar. Elsewhere, the radar is simply described as a ...