Search results
Results from the WOW.Com Content Network
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
In order to apply this to the Navier–Stokes equations, three assumptions were made by Stokes: The stress tensor is a linear function of the strain rate tensor or equivalently the velocity gradient. The fluid is isotropic. For a fluid at rest, ∇ ⋅ τ must be zero (so that hydrostatic pressure results).
Examples of degenerate cases—with the non-linear terms in the Navier–Stokes equations equal to zero—are Poiseuille flow, Couette flow and the oscillatory Stokes boundary layer. But also, more interesting examples, solutions to the full non-linear equations, exist, such as Jeffery–Hamel flow , Von Kármán swirling flow , stagnation ...
Shown is a sphere in Stokes flow, at very low Reynolds number. Stokes flow (named after George Gabriel Stokes), also named creeping flow or creeping motion, [1] is a type of fluid flow where advective inertial forces are small compared with viscous forces. [2] The Reynolds number is low, i.e. . This is a typical situation in flows where the ...
In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...
However, theoretical understanding of their solutions is incomplete, despite its importance in science and engineering. For the three-dimensional system of equations, and given some initial conditions, mathematicians have not yet proven that smooth solutions always exist. This is called the Navier–Stokes existence and smoothness problem.
The case for an oscillating far-field flow, with the plate held at rest, can easily be constructed from the previous solution for an oscillating plate by using linear superposition of solutions. Consider a uniform velocity oscillation u ( ∞ , t ) = U ∞ cos ω t {\displaystyle u(\infty ,t)=U_{\infty }\cos \omega t} far away from the ...
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations .