Search results
Results from the WOW.Com Content Network
Nanoparticles can generally carry drugs in two ways: drugs can either be bound to the outside of the nanoparticles or packed within the polymeric matrix of the nanoparticles. [14] Smaller nanoparticles have higher surface area ratios and can thus bind a high quantity of drug, while larger nanoparticles can encapsulate more of the drug within ...
Polymeric nanoparticles may also contain beneficial controlled release mechanisms. Polymer Branch. Nanoparticles made from natural polymers that are biodegradable have the abilities to target specific organs and tissues in the body, to carry DNA for gene therapy, and to deliver larger molecules such as proteins, peptides, and even genes. [7]
Polymeric nanoparticles are synthetic polymers with a size ranging from 10 to 100 nm. Common synthetic polymeric nanoparticles include polyacrylamide, [8] polyacrylate, [9] and chitosan. [10] Drug molecules can be incorporated either during or after polymerization.
Nanoparticles of natural polymers such as chitosan are commonly used adjuvants in modern vaccine formulations. [63] Ceria nanoparticles appear very promising for both enhancing vaccine responses and mitigating inflammation, as their adjuvanticity can be adjusted by modifying parameters such as size, crystallinity, surface state, and stoichiometry.
A nanocapsule is a nanoscale shell made from a nontoxic polymer. They are vesicular systems made of a polymeric membrane which encapsulates an inner liquid core at the nanoscale. Nanocapsules have many uses, including promising medical applications for drug delivery, food enhancement, nutraceuticals, and for self-healing
A nanogel is a polymer-based, crosslinked hydrogel particle on the sub-micron scale. [1] [2] [3] These complex networks of polymers present a unique opportunity in the field of drug delivery at the intersection of nanoparticles and hydrogel synthesis.
Polymer-based nanoparticles can be made from either natural or synthetic sources. Nanospheres and nanocapsules are polymeric nanoparticle systems. Natural polymers can be found in the environment or human body. On the other hand, synthetic polymers do not occur naturally and are artificially developed polymers with chemical modifications.
Dextran has many favorable properties that make it an ideal candidate for applications as a drug delivery system. As a natural polymer, dextran is biocompatible and biodegradable in the human body. Dextran can also be chemically modified to produce derivatives at a low cost, which can address a few of the undesirable characteristics including ...