Search results
Results from the WOW.Com Content Network
A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...
A number of authors, notably Jean le Rond d'Alembert, and Carl Friedrich Gauss used trigonometric series to study the heat equation, [20] but the breakthrough development was the 1807 paper Mémoire sur la propagation de la chaleur dans les corps solides by Joseph Fourier, whose crucial insight was to model all functions by trigonometric series ...
An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.
List of Fourier-related transforms; Fourier transform on finite groups; Fractional Fourier transform; Continuous Fourier transform; Fourier operator; Fourier inversion theorem; Sine and cosine transforms; Parseval's theorem; Paley–Wiener theorem; Projection-slice theorem; Frequency spectrum
A curiosity of the convergence of the Fourier series representation of the square wave is the Gibbs phenomenon. Ringing artifacts in non-ideal square waves can be shown to be related to this phenomenon. The Gibbs phenomenon can be prevented by the use of σ-approximation, which uses the Lanczos sigma factors to help the sequence converge more ...
At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true ...
In mathematics, a half range Fourier series is a Fourier series defined on an interval [,] instead of the more common [,], with the implication that the analyzed function (), [,] should be extended to [,] as either an even (f(-x)=f(x)) or odd function (f(-x)=-f(x)). This allows the expansion of the function in a series solely of sines (odd) or ...
A generalized Fourier series is the expansion of a square integrable function into a sum of square integrable orthogonal basis functions. The standard Fourier series uses an orthonormal basis of trigonometric functions , and the series expansion is applied to periodic functions.