enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In various areas of mathematics, the zero set of a function is the set of all its zeros. More precisely, if f : X → R {\displaystyle f:X\to \mathbb {R} } is a real-valued function (or, more generally, a function taking values in some additive group ), its zero set is f − 1 ( 0 ) {\displaystyle f^{-1}(0)} , the inverse image of { 0 ...

  3. Gauss–Lucas theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Lucas_theorem

    For a fourth degree complex polynomial P (quartic function) with four distinct zeros forming a concave quadrilateral, one of the zeros of P lies within the convex hull of the other three; all three zeros of P' lie in two of the three triangles formed by the interior zero of P and two others zeros of P. [2]

  4. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Its zeros in the left halfplane are all the negative even integers, and the Riemann hypothesis is the conjecture that all other zeros are along Re(z) = 1/2. In a neighbourhood of a point z 0 , {\displaystyle z_{0},} a nonzero meromorphic function f is the sum of a Laurent series with at most finite principal part (the terms with negative index ...

  5. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    has only real zeros if and only if λ ≥ Λ. Since the Riemann hypothesis is equivalent to the claim that all the zeroes of H(0, z) are real, the Riemann hypothesis is equivalent to the conjecture that Λ ≤ 0. Brad Rodgers and Terence Tao discovered the equivalence is actually Λ = 0 by proving zero to be the lower bound of the constant. [16]

  6. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    All zeros of () are real, distinct from each other, and lie in the interval (,). Furthermore, if we regard them as dividing the interval [ − 1 , 1 ] {\displaystyle [-1,1]} into n + 1 {\displaystyle n+1} subintervals, each subinterval will contain exactly one zero of P n + 1 {\displaystyle P_{n+1}} .

  7. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros.

  8. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.

  9. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The numbers λ 1, λ 2, ..., λ n, which may not all have distinct values, are roots of the polynomial and are the eigenvalues of A. As a brief example, which is described in more detail in the examples section later, consider the matrix A = [ 2 1 1 2 ] . {\displaystyle A={\begin{bmatrix}2&1\\1&2\end{bmatrix}}.}