Search results
Results from the WOW.Com Content Network
magnetic moment: ampere square meter (A⋅m 2) coefficient of friction: unitless (dynamic) viscosity (also ) pascal second (Pa⋅s) permeability (electromagnetism) henry per meter (H/m) reduced mass: kilogram (kg) Standard gravitational parameter: cubic meter per second squared mu nought
Within a given distribution of mass, the unique point in space at which the weighted relative position of the distributed mass sums to zero. center of pressure centigrade See Celsius scale. central-force problem A classic problem in potential theory involving the determination of the motion of a particle in a single central potential field.
Magnetic moment (or magnetic dipole moment) m: The component of magnetic strength and orientation that can be represented by an equivalent magnetic dipole: N⋅m/T L 2 I: vector Magnetization: M: Amount of magnetic moment per unit volume A/m L −1 I: vector field Momentum: p →: Product of an object's mass and velocity kg⋅m/s L M T −1 ...
Also acid ionization constant or acidity constant. A quantitative measure of the strength of an acid in solution expressed as an equilibrium constant for a chemical dissociation reaction in the context of acid-base reactions. It is often given as its base-10 cologarithm, p K a. acid–base extraction A chemical reaction in which chemical species are separated from other acids and bases. acid ...
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
Theoretical chemistry requires quantities from core physics, such as time, volume, temperature, and pressure.But the highly quantitative nature of physical chemistry, in a more specialized way than core physics, uses molar amounts of substance rather than simply counting numbers; this leads to the specialized definitions in this article.
In fluid dynamics, the Kirchhoff equations, named after Gustav Kirchhoff, describe the motion of a rigid body in an ideal fluid. = + + +, = + +, = (~ +) = ^, = ^ where and are the angular and linear velocity vectors at the point , respectively; ~ is the moment of inertia tensor, is the body's mass; ^ is a unit normal vector to the surface of the body at the point ; is a pressure at this point ...
For example, if a person places a force of 10 N at the terminal end of a wrench that is 0.5 m long (or a force of 10 N acting 0.5 m from the twist point of a wrench of any length), the torque will be 5 N⋅m – assuming that the person moves the wrench by applying force in the plane of movement and perpendicular to the wrench.