Search results
Results from the WOW.Com Content Network
q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.
In fluid dynamics, stagnation pressure, also referred to as total pressure, is what the pressure would be if all the kinetic energy of the fluid were to be converted into pressure in a reversable manner. [1]: § 3.2 ; it is defined as the sum of the free-stream static pressure and the free-stream dynamic pressure. [2]
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
If an NPSH A is say 10 bar then the pump you are using will deliver exactly 10 bar more over the entire operational curve of a pump than its listed operational curve. Example: A pump with a max. pressure head of 8 bar (80 metres) will actually run at 18 bar if the NPSH A is 10 bar. i.e.: 8 bar (pump curve) plus 10 bar NPSH A = 18 bar.
The static head of a pump is the maximum height (pressure) it can deliver. The capability of the pump at a certain RPM can be read from its Q-H curve (flow vs. height). Head is useful in specifying centrifugal pumps because their pumping characteristics tend to be independent of the fluid's density. There are generally four types of head:
This is a crucial parameter for pump selection and is a popularly used parameter for ascertaining industrial requirements. By eliminating the inlet head, we remove the effect of the supplied pressure to the pump and are left with only the pump’s energy (head) contribution to the fluid flow. Schematic representation of pressure heads in a pump.
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.
With C v = 1.0 and 200 psia inlet pressure, the flow is 100 standard cubic feet per minute (scfm). The flow is proportional to the absolute inlet pressure, so the flow in scfm would equal the C v flow coefficient if the inlet pressure were reduced to 2 psia and the outlet were connected to a vacuum with less than 1 psi absolute pressure (1.0 ...