enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear Overhauser effect - Wikipedia

    en.wikipedia.org/wiki/Nuclear_Overhauser_effect

    The motivations for using two-dimensional NMR for measuring NOE's are similar as for other 2-D methods. The maximum resolution is improved by spreading the affected resonances over two dimensions, therefore more peaks are resolved, larger molecules can be observed and more NOE's can be observed in a single measurement.

  3. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    When interpreting the COSY spectrum, diagonal peaks correspond to the 1D chemical shifts of individual nuclei, similar to the standard peaks in a 1D NMR spectrum. The key feature of a COSY spectrum is the presence of cross-peaks as shown in Figure 1, indicating coupling between pairs of nuclei.

  4. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    The CH 2 peak will be split into a doublet by the CH peak—with one peak at 1 ppm + 3.5 Hz and one at 1 ppm − 3.5 Hz (total splitting or coupling constant is 7 Hz). In consequence the CH peak at 2.5 ppm will be split twice by each proton from the CH 2. The first proton will split the peak into two equal intensities and will go from one peak ...

  5. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK. Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  6. Heteronuclear single quantum coherence spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Heteronuclear_single...

    In a typical HSQC spectrum, the NH 2 peaks from the sidechains of asparagine and glutamine appear as doublets on the top right corner, and a smaller peak may appear on top of each peak due to deuterium exchange from the D 2 O normally added to an NMR sample, giving these sidechain peaks a distinctive appearance. The sidechain amine peaks from ...

  7. Triple-resonance nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Triple-resonance_nuclear...

    The second method is by NMR, which began in the 1980s when Kurt Wüthrich outlined the framework for NMR structure determination of proteins and solved the structure of small globular proteins. [5] The early method of structural determination of protein by NMR relied on proton-based homonuclear NMR spectroscopy in which the size of the protein ...

  8. Deuterated DMSO - Wikipedia

    en.wikipedia.org/wiki/Deuterated_DMSO

    13 C NMR Spectrum of DMSO-d 6. Pure deuterated DMSO shows no peaks in 1 H NMR spectroscopy and as a result is commonly used as an NMR solvent. [2] However commercially available samples are not 100% pure and a residual DMSO-d 5 1 H NMR signal is observed at 2.50ppm (quintet, J HD =1.9Hz). The 13 C chemical shift of DMSO-d 6 is 39.52ppm (septet ...

  9. Solid-state nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Solid-state_nuclear...

    Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...