enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Computer vision - Wikipedia

    en.wikipedia.org/wiki/Computer_vision

    Computer vision is an interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos.From the perspective of engineering, it seeks to automate tasks that the human visual system can do.

  3. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    6 different real multiple choice-based exams (735 answer sheets and 33,540 answer boxes) to evaluate computer vision techniques and systems developed for multiple choice test assessment systems. None 735 answer sheets and 33,540 answer boxes Images and .mat file labels Development of multiple choice test assessment systems 2017 [197] [198]

  4. CVIPtools - Wikipedia

    en.wikipedia.org/wiki/CVIPtools

    The Computer Vision and Image Processing Algorithm Test and Analysis Tool, CVIP-ATAT, creates human and computer vision applications. Its primary use is to execute algorithms for processing multiple images at a time, incorporating various algorithmic and parameter variations. The program determines a suitable algorithm for pre-processing ...

  5. Category:Applications of computer vision - Wikipedia

    en.wikipedia.org/wiki/Category:Applications_of...

    The following is a non-complete list of applications which are studied in computer vision. In this category, the term application should be interpreted as a high level function which solves a problem at a higher level of complexity. Typically, the various technical problems related to an application can be solved and implemented in different ways.

  6. Caltech 101 - Wikipedia

    en.wikipedia.org/wiki/Caltech_101

    The Caltech 101 data set was used to train and test several computer vision recognition and classification algorithms. The first paper to use Caltech 101 was an incremental Bayesian approach to one-shot learning, [ 4 ] an attempt to classify an object using only a few examples, by building on prior knowledge of other classes.

  7. CIFAR-10 - Wikipedia

    en.wikipedia.org/wiki/CIFAR-10

    The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research. [1] [2] The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. [3]

  8. Content-based image retrieval - Wikipedia

    en.wikipedia.org/wiki/Content-based_image_retrieval

    General scheme of content-based image retrieval. Content-based image retrieval, also known as query by image content and content-based visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases (see this survey [1] for a scientific overview of the CBIR field).

  9. Viola–Jones object detection framework - Wikipedia

    en.wikipedia.org/wiki/Viola–Jones_object...

    The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.